MATH 141: Quiz 5

Directions:

- * Show your thought process (commonly said as "show your work") when solving each problem for full credit. **Remember to fully simplify.**
- * If you do not know how to solve a problem, try your best and/or explain in English what you would do.
- * Good luck!
- 1. Find the absolute maximum and absolute minimum of the function

$$f(x) = x^{3} + 4x^{2} + 1, [-2,2]$$
Use Closed Interval Method. (1) Closed interval
Check EVT before using. (2) Continues, yets ble domain R
(1) Find crit #3 and ply this in
 $f'(x) = 3x^{2} + 8x$
(2) Solve $f'(x) = 0$ (b) $f'(x) DNE.$
 $3x^{2} + 8x = 0$ (V/A since polynomial
 $x = 0, \frac{8}{3}$ (2) $f'(x) = 0$
 $x = 0, \frac{8}{3}$ (3) $f(-2) = \frac{8}{3}$ and in [-2,2]
(2) Check embrands
 $f(-2) = (-2)^{3} + 4(-2)^{2} + 1 = -8 + 16 + 1 = 7$
 $f(-2) = 2^{3} + 4(-2)^{2} + 1 = -8 + 16 + 1 = 7$
 $f(-2) = 7$ $f($

- 2. If $u = x^2$, find the differential <u>du</u>. $du = f'(x) dx = \int 2x dx/$
- 3. Consider

$$f(x) = \frac{1}{x}, \quad [-3, -1]$$

Can you invoke the Mean Value Theorem? If not, explain why you cannot.

If you can invoke the MVT, find all values of c which satisfy the conclusion of the MVT.

Ves, you are allowed to: Flivis why:
(1)
$$f(x) = \frac{1}{x}$$
 has domain $(-\infty, 0) \cup (0, \infty)$ so certainly continuous on
 $\begin{bmatrix} -3, -1 \end{bmatrix}$
 $agg(x) = -\frac{1}{x^2}$ has domain $(-\infty, 0) \cup (0, \infty)$ so differentiable on
 $\begin{pmatrix} -3, -1 \end{pmatrix}$

By MVT then is a
$$c \in (-3, -1)$$
 where
 $f'(c) = \frac{f(b) - f(a)}{b - a}$ where $a = -1$, $b = -3$
 $-\frac{1}{c^2} = \frac{f(-1) - f(-3)}{-1 - (-3)} = \frac{3}{-1} - \frac{1}{-3} = \frac{3 - 1}{-3} = \frac{-3}{-3}$
 $= \frac{-\frac{2}{3}}{-1 - (-3)} = -\frac{2}{-3} + \frac{1}{2} = -\frac{1}{3}$

So $c^{*}(-3) - \frac{1}{c^{2}} = -\frac{1}{3} \cdot (-3) \cdot c^{2}$ $\pm \sqrt{3} = \sqrt{c^{2}}$ $c = \pm \sqrt{37} \xrightarrow{2} \qquad \boxed{c = -\sqrt{37}} \qquad s_{1/nee}^{1/nee}$ $-\sqrt{37} \in [-3, -1]$